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A graphical method for finding possible quantizable free-field 
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Abstract. Graphs associated with the Gel’fand-Yaglom equations for arbitrary spin are 
used in a simple method to find the number of conditions which a good quantizable free- 
field theory must satisfy. The number of conditions is seen to be simply related to the 
line independence numbers of the s block subgraphs of the theory. This provides a rough 
guide as to whether a particular theory is possibly quantizable. Some examples are given. 
Also a general result is given which enables quick elimination of a range of ‘bad’ theories 
by visual examination of their graphs. 

1. Introduction 

The usual approach to the study of higher-spin quantum fields and their interactions is 
to start with a good Lagrangian free-field theory (ie one which is consistently quantizable) 
and introduce interactions as additive terms to the free-field Lagrangian. So far, this 
approach has been largely confined to a few well known good free-field theories such 
as the Dirac-Fierz-Pauli spin 4 and the various spin 2 theories. The difficulties of 
introducing interactions consistently in these theories are well known. It is natural to 
ask whether there are other good free-field theories which may be stable to interactions. 
This question was posed by Wightman (1968) who observed that covariant field equations 
which may be amenable to the stable introduction of interactions might be found among 
those Gel’fand-Yaglom equations having physically reasonable mass spectra. This is 
obviously not sufficient, for such equations must also be quantizable, and field propaga- 
tion in interaction must be casual. However, since any covariant field theory can be 
obtained by basing the Gel’fand-Yaglom equations on a sufficiently complicated 
representation of the proper Lorentz group Yp and choosing the coefficient matrices 
appropriately, it is important to study these equations, their mass-spin spectra and 
quantization, and look for possible good theories. Shamaly and Capri (1973) for ex- 
ample, have unified a wide range of spin 1 theories by considering the possible Gel’fand- 
Yaglom equations based on a particular general representation of Yp. 

Gel’fand and Yaglom have made a thorough study of the classical field theory of their 
equations, summarized in the classic book by Gel’fand er al(1963). Independently the 
same equations were studied by Bhabha, Harish-Chandra and many others. Thus a 
great deal is known about the classical theory, for example how to calculate the mass-spin 
spectra, the conditions necessary for definite charge and energy etc. However, in practice 
it is still very difficult to find good Gel’fand-Yaglom free field theories, and until recently, 
little has been done on their quantization. In previous papers (Cox 1974a, b) the author 
has described a graphical approach to the Gel’fand-Yaglom theory which helps in 
t Present address: Department of Mathematics, University of Aston, Costa Green, Birmingham B4 7ET, IJK. 
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finding good theories. A lattice graph is associated with the representation of Yp used 
in the theoryand thisgraph reflects the structure ofthecoefficient matrices oftheGel’fand- 
Yaglom equations. The idea is to make statements about the theory by examination of 
the graph, which is of a very simple form. In this paper we give some further results in 
this approach, describing a quick heuristic method of finding possible good Gel’fand- 
Yaglom theories and a method of eliminating some bad ones. Having found a possible 
good theory, there is still a lot of work to verify it, but the technique at least provides a 
rough guide. It is particularly useful for eliminating bad theories. 

We consider only integral spin and we do not allow repeated irreducible representa- 
tions of LZp in the theory. Also mass-spin states are required to be non-degenerate and 
physical states of zero charge or energy are not allowed. The terminology used here is 
more in line with current graph theory practice and differs slightly from that of the 
previous papers. 

In 6 2 we outline the graphical representation of the Gel’fand-Yaglom theory, 
which has been given in detail elsewhere (Cox 1974b). In 9; 3 we specify the detailed 
conditions which a good free-field theory must satisfy, from the point of view of mass 
spectra and quantization. 

In 9; 4 we show the connection between the number of conditions imposed by a speci- 
fied mass spectrum and the line independence numbers of the s block graphs. The line 
independence number of a graph can be obtained by finding a maximal matching on the 
graph and in the case of s block graphs this is usually easy to do by inspection. Some 
examples are given in 6 5 ,  showing how to isolate possible good theories. The actual 
verification of the theories has been given elsewhere. 

In 8 6 we give a general result which is useful in eliminating a wide range of repre- 
sentations of LZp from consideration as good theories. Section 7 is the conclusion. 

2. Graphical representation of the theory 

We use the notation of Cox (1974b). We plot the irreducible representations T ~ ,  of LZp as 
points in the ( l o ,  I , )  plane. Those points corresponding to finite representations occupy 
the fan f i  > /lot in the upper half plane, where for integer spin, both lo and I ,  are both 
integers. Any finite-dimensional field theory without repeated representations will 
correspond to a finite subset of points in this region. The Gel’fand-Yaglom equation is 

(L,  8’ + iX)$ = 0 (2.1) 

where t,b transforms according to a reducible representation 9 of 9. In the ‘canonical’ 
basis Yo has the form 

Lo = [C;“S,,~Smm~] (2.2) 

and so is completely reducible into ‘s blocks’ 

A, = [CY’] (2.3) 

whose ‘elements’ are in fact scalar matrices. The spin index s takes the values 
s = I I o l ,  [ lo(  + 1,. . . I ,  - 1 for the irreducible representation T - ( l o ,  I , ) ,  while the m index 
takes the value m = -s, -(s - l), . . . , s- 1, s. The m index is always suppressed in the 
s blocks, so that in fact the dimension of A,  is given by the number of representations 
( lg) ,  ly’) such that Il$)l < s < l y ) -  1. 
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The existence of a real invariant Lagrangian from which (2.1) is derivable imposes 
further conditions on the Cy‘ elements. In particular the Cy’ are non-zero only for 
‘linked’ representation T, 7’ such that 

(h,l’J = (Iokl,Il) or ( I o , I ; )  = (Io,Ilkl). (2.4) 

We associate a linear graph G with a particular Gel’fand-Yaglom theory by plotting as 
vertices the irreducible representations 7i contained in 92 and connecting with an (un- 
directed) edge those vertices corresponding to representations satisfying (2.4). The 
result will be some finite subgraph of a square lattice graph, and this graph will charac- 
terize the general Gel’fand-Yaglom theory based on that particular representation 9, 
in that it will reflect the block matrix structure of Lo.  

The representations zi which appear in a particular s block A, will be those corre- 
sponding to vertices in or on the rectangle 

I o = - &  I o = s  

I I  = s + l ,  I, = j + l  

in the I, > [ I , )  fan, where j is the maximum value of s in the representation. This will 
correspond to a particular subgraph G, of G, the graph of the theory. It is these subgraphs 
G , ,  representing the s blocks of the theory, on which we wish to concentrate, for as shown 
in Cox (1974a) the entire theory may be discussed in terms of these s blocks. The mass- 
spin spectrum of the theory is decided by the non-zero eigenvalues of the s blocks ; the zero 
eigenvalues of the s blocks determine the mathematical complexity of the theory (‘sub- 
sidiary’ and ‘auxiliary’ conditions), and therefore ultimately the sensitivity toward 
interactions, and the conditions for quantizability of the free-field theory may be ex- 
pressed solely in terms of trace conditions on the s block. 

We will often need to regard G, as a directed graph (digraph), with an edge pointing 
in either direction between any two vertices, we will then denote it by D,. The edges of 
D, may be labelled with the corresponding elements of A, ,  which may conversely be 
written down by reference to graph D,. 

3. Conditions imposed by a good theory 

To see whether a given Gel’fand-Yaglom theory can support a particular mass-spin 
spectrum it is necessary to find the characteristic polynomial of each s block A,(A) and 
try to choose the coefficients, which will be functions of the C~I ‘J ,  to give this mass spec- 
trum. Even for small representations 92 this is a difficult algebraic problem, and it is 
desirable to look for methods which take advantage of the simple structure of the s 
blocks as reflected in their graphs. We have given (Cox 1974b) a graphical technique for 
finding the coefficients of the A,(A) as functions of the parameters C;I*J. This consists of 
visually searching the graph D, for sets of disjoint directed cycles of total length 2r, from 
which we can construct the required coefficients. As a first step in the search for a good 
theory it is useful to know how many conditions we need to satisfy to give a particular 
quantizable theory. For all but one of the coefficients of A,(A) which do not vanish 
identically, there will be a condition imposed by the required mass-spin spectrum. It 
follows from the condition ASA, = ASAS where A, is the restriction to the s subspace of 
the invariant hermitian form A used in constructing the Lagrangian, that these coefficients 
are real functions of the arbitrary parameters C y ’ .  Note that this does not necessarily 
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imply that the eigenvalues of A, are real. Thus each non-vanishing coefficient gives a 
real condition. The mass-spin spectrum alone does not fully determine the theory. 
Possibly distinct theories with the same mass-spin spectra may be obtained by choosing 
s blocks with the same characteristic polynomials but distinct minimal polynomials. 
The minimal polynomials are important in the quantization and indirectly in the 
introduction of interactions since they partly determine the nature of the subsidiary 
conditions which. are so troublesome in the field equations. The extra conditions implied 
by specifying particular minimal polynomials are difficult to count and so we assume the 
best possible case, where only the characteristic polynomial is specified, and the minimal 
polynomial left arbitrary. If there are r non-zero mass states in the theory, then there 
will be r -  1 trace conditions for quantization (Cox 1974a), in addition to the conditions 
imposed on the A,@) coefficients. 

The number of arbitrary parameters C;‘’ available to satisfy the above conditions is 
easy to count from the graph G, remembering that from space reflection covariance G 
must be symmetrical about the l 1  axis. So to get a rough guide to whether a good theory 
is possible, we have only to find the number of non-vanishing coefficients of the A,(IL). 
In the next section we derive a simple visual method for this, using the s block graphs G,. 

The general problem here is to use the simple structure ofa graph to make statements 
about a matrix associated with it. This type of problem is receiving some attention from 
graph theorists at the moment, although their main concern is with the adjacency 
matrix of a graph (elements 0 or 1) (Wilson 1972). However, many of those results of this 
‘graph eigenvalue theory’ relating to connectivity properties only, carry over to the more 
general case where the non-zero elements of the associated matrix can be arbitrary to 
some extent. 

4. Non-vanishing coefficients of the A,@) 

We first notice that G and G, are bipartite (bigraphs). That is, the vertex set can be 
partitioned into two disjoint sets VI, V, such that no vertex in VI (V,) is connected to 
any other vertex in Vl(V,). This means that i t  is possible to number the vertices so that 
the s blocks take the simple form 

which in itself can be useful. A bigraph is characterized by the fact that all its cycles are 
even, and it is a consequence of this that the eigenvalues of any matrix associated with 
such a graph are ‘paired’, ie of the form fx. From this follows the general form of the 
As(;.) given in Cox (1974a). We can write 

n 

A,()&) = Ct!( - A ) ’ - z r .  
r = O  

Cy: ( r  2 1) is the sum of all the terms corresponding to sets of disjoint direct cycles of 
total length 2r in D,, and Cg’ = 1. It is a non-vanishing polynomial in the Ct i r~  if and 
only if there exists at least one such set of cycles. Since the existence of a set of disjoint 
cycles of total length 2r implies a set of total length 2s for all s < r it is sufficient to find 
the maximum value of r, and this will give the total number of conditions implied by a 
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specified mass spectrum. For some graphs max(r) = ni2-h this case it is possible to 
find a set of disjoint cycles which covers all vertices of the graph, or all but one vertex. 
In general however this will not be possible and some of the Cy: will be identically zero 
simply by virtue of the connectivity of the graph. To find I = max(r) we have only to 
find a set of disjoint directed cycles of D, of maximum length. Since all the cycles of D, 
are of even length and any two adjacent vertices define a cycle of length 2, it is always 
possible to replace any set of disjoint cycles by a set of disjoint 2-cycles covering the 
same vertices and with the same total length. But 2-cycles in D, correspond to edges in 
the undirected graph G, and so a set of disjoint 2-cycles of total length 2r in D, corres- 
ponds to a set of r disjoint edges in G,. So I will be equal to the maximum number of 
disjoint edges it is possible to have in the graph G,. 

If G is any graph, an independent set of edges of G has no two edges adjacent. and is 
called a matching of the graph (it identifies pairs of indices). The maximum cardinality 
of such a set is called the line independence number P,(G) of the graph, and any set of 
Pl(G) independent lines is called a maximal matching of G. What we have demonstrated 
above is that for s block, A ,  with associated graph G,, the number of conditions imposed 
by a given mass spectrum is : 

1, = Pl(G,). 

The problem of finding maximal matchings on a bigraph is well known in graph theory 
and there exist straightforward algorithms for solving it (Berge 1973). For our graphs 
this is hardly necessary as a visual inspection of the graph is usually sufficient to find a 
maximal matching and hence I ,  quickly. In the case when the graph is in fact a tree (no 
cycles) a simple algorithm for finding B,(G,) is as follows : start at an isolated edge with 
vertices (c, U), U being the external vertex of degree 1, and U being the internal vertex. 
Remove from the graph the 'star' consisting of the edge ( U ,  U) and all other edges adjacent 
to it. Repeat this procedure on the remaining graph, startingat another isolated edge and 
continue removing stars in this way until all that is left is a set of disjoint edges (possibly 
null). The number of stars removed and the number of edges remaining are added to 

Having found 1, for each s block, we add these to get the total number of conditions 
implied by any given mass-spin spectrum. This, with the number of trace conditions 
imposed by quantization must then be compared with the number ofarbitrary parameters 
Ci7'. If the number of conditions exceeds the number of parameters, then a good theory 
is very unlikely. If there are more parameters than conditions then a good theory may 
be possible, but this will of course depend on the nature of the conditions. Also, from the 
way the Cy' are combined in the A$-) coefficients it becomes apparent that for a high 
likelihood of a good theory the number of parameters must exceed the number of 
conditions by a fair margin. The examples given in the next section will illustrate this. 

give Bl(G,). 

5. Some examples 

5.1. Very high spin theories 

As we have described elsewhere (Cox 1974b), for spin greater than 8, the number of 
conditions outweighs the number of arbitrary parameters available. It is therefore un- 
likely that good Gel'fand-Yaglom theories exist for such high spin (without repeated 
representations of 9J. To verify this algebraically would be difficult. 
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5.2. 9 = (0, I )  0 (0,2) 0 (0,3) 0 ( -  1,3) 0 (1,3) 

The graph of 9 is 

and its s-block graphs are : 

Thus there are 3 real conditions imposed by mass spectra. From the graph G, there are 
3 arbitrary complex parameters to fulfil these conditions, so there seems to be here a 
possibility of a good theory. It is not difficult to verify that a good unique mass theory is 
in fact possible (Cox 1974b) although W will not sustain a multi-mass theory. 

5.3. 

The graph of W is 
= (0,l) 0 (0,2) 0 (0,3) 0 ( -  1,2) 0 (1,2) 0 ( -2 ,3)  0 ( -  1,3)  0 ( I ,  3)  0 (2,3) 

and its s block graphs are 

So there are 6 real conditions imposed by mass spectra, and 6 arbitrary complex para- 
meters with which to satisfy these. Again, a detailed analysis of the theory based on 9 
reveals a wide range of possible good theories-including multi-mass theories. 

5.4. W = (0, I )  0 (0,2) 0 (0, 3) 0 (0,4) 0 (-3,4) 0 (-2,4) 0 ( -  1,4) 0 ( I ,  4) 0 
(294) 0 (394) 

The s block graphs are 
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So there are 10 real conditions imposed by mass spectra, and 6 x 2 = 12 real para- 
meters with which to satisfy these. The excess of parameters over conditions is not great 
in this case and in fact it is easy to see that the above graph cannot lead to a good theory. 
This fact is a consequence of a general result which we describe in the next section. 

6. The elimination of certain types of bad theories 

Amar and Dozzio (1972) have given the general form of graphs, for quantizable theories, 
given the minimum value I of s for which A,  is diagonalizable. Any good theory must be 
a subgraph of such graphs, and in the special case of unique mass theories Amar and 
Dozzio have shown that these graphs are necessary and sufficient. However, an important 
point is that it may not be possible to construct a theory from a given graph which satisfies 
the assumed conditions of their result-that is a theory having unique mass and certain 
blocks diagonalizable. This is the case for example with theories based on the repre- 
sentation 

9 = C,(O, s+  1 ) .  

The graph of this representation lies within the graph of Amar and Dozzio, but in general 
does not contain enough arbitrary parameters to satisfy the conditions required for 
unique mass (Shamaly and Capri 1971). We now give a result which can be used to 
eliminate a wide range of possible theories by a quick inspection of their graphs. 

6.1 .  Result 

Let G be the graph of a representation 2, with s block subgraphs D,. Let 1 be the mini- 
mum value of s for which A,  is diagonalizable, so that G is in fact restricted to be a certain 
subgraph in the ( l o ,  11) plane as described by Amar and Dozzio. Then a quantizable 
theory with non-zero charge and energy density and non-degenerate mass-spin states is 
not possible if any D, for s < I contains exactly one set of disjoint cycles of total length 
2[n/2] where A,  is n x n. 

By more careful wording the result can be strengthened, as will be seen from the 
proof, but as stated above it is sufficient to indicate the general idea. 

6.2. Proof 

If say Dj ( j  < I )  has exactly one set of disjoint cycles of total length 2[n/2] then the coeffi- 
cient C(.&/,l consists of a single term which is a product of factors corresponding to dis- 
joint edges of G,. This term cannot therefore be made to vanish without changing the 
graph G. However, since this term does not vanish, A j  has at most one zero eigenvalue, 
the rest being non-zero. Since theories referred to in the result cannot have s blocks with 
repeated non-zero eigenvalues, it follows that A j  must be diagonalizable, contrary to the 
assumption j < 1. 

Because of the symmetry of the Gel'fand-Yaglom graphs, it is not necessary that Dj 
has exactly one set of disjoint cycles of total length 2[n/2] to eliminate a good theory by the 
above result. It may have two sets, which due to  symmetry contribute the same terms to 
C!&,]-then diagonalizability will again be unavoidable. 

Section 5.4 illustrates the above result. We have only to consider D,, which clearly 
has exactly one set of disjoint cycles of total length 6. Unless we break the graph, the 
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2-block will therefore be diagonalizable, and by the work of Amar and Dozzio it cannot 
therefore be quantizable. 

The above result becomes particularly powerful when looking for, or trying to 
eliminate unique mass theories. In this case, all but one s block must be nilpotent and if 
for any such s block with digraph D, there exists exactly one set of disjoint cycles of total 
length 2r for any r,  then we cannot have a good unique mass theory. 

Variations and extensions of the above result can be used to eliminate many types of 
representation from providing good unique or multi-mass theories. The generalization of 
$5.4 is as follows. 

If any Gel’fand-Yaglom graph contains a D, which is topologically isomorphic to a 
‘T-graph’ such as shown in figure 1, with 2r ( r  even) horizontal edges and an odd number 
of vertical edges, then the corresponding A,  is diagonalizable and therefore the theory 
is not quantizable. Figure 2 shows a further example eliminating a possible spin 7 

Figure 1. A typical T graph not leading to a good Gel’fand-Yaglom theory 

t 

Figure 2. A spin seven theory with disconnected 3-block. Owing to the equivalence of 
0:” and 0:”) this graph cannot represent a good theory. 

theory. The D3 graph is disconnected, so A ,  will be completely reducible and its charac- 
teristic polynomial will be the product of those of DL”, DL”, 0‘3,). Since by symmetry 
those of 05’) and Di3) are the same and repeated non-zero eigenvalues are not allowed, 
the submatrices corresponding to Di2) and DL3) must be taken as nilpotent. Since each is a 
chain of odd length, they fall to the general result above and must vanish altogether if 
they are to be nilpotent. So the graph of figure 2 cannot give a good theory. The extension 
of these ideas to similar and other graphs should now be obvious. 
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7. Conclusion 

We have described a heuristic method for finding possible good Gel’fand-Yaglom 
theories and given a general result which allows us to rule out many types of graph as 
candidates for good theories. When a possible good theory has been found it must be 
checked and the actual representation of Lo obtained, from which the Lagrangian may 
be determined. Frank (1973) has recently shown how to convert from the Gel’fand- 
Yaglom representation to the more usual spin-tensor formulation if this is desired, but 
it seems preferable to  develop the complete quantum field theory for the Gel’fand- 
Yaglom equations, including the case of Lo singular and non-diagonalizable. Much of 
this has already been done by Aurilla and Umezawa (1969), Schwinger (1951), Wightman 
and Capri (Wightman 1968). 

It has still not been possible to prove categorically that all higher-spin interacting 
quantum field theories are inconsistent (in the sense of Vel0 and Zwanzinger 1969a, b, 
and Johnson and Sudarshan 1961) nor to actually exhibit a good higher-spin theory. 
In the absence of a general inconsistency proof we are still encouraged to look for good 
interaction theories. A first step in this search is to find good free-field theories and in 
this paper we have given an approach which helps in finding good free-field Gel’fand- 
Yaglom equations. 
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